Ch 16: Electrostatics

- Electric charges that are not moving
- Definition of new symbols
 - e^- = electron
 - p = proton
 - n = neutron
 - e^+ = positron

Coulomb’s Law

$$F = \frac{k Q_1 Q_2}{r^2}$$

- $k = 9.0 \times 10^9$ N m2/C2
- Coulomb’s constant
- Q_1, Q_2 = charges
 - measured in Coulombs (C)
 - 1 C is a lot of charge!
- r = distance between Q_1 and Q_2

Electric Force

- Similar form as gravitational force (weird, huh?), except
 - positive and negative charges
- Like charges repel; opposite charge attract

Charge Carriers

- The electron
 - $1 e^- = -1.602 \times 10^{-19}$ C
 - smallest unit of charge, also referred to as e
 - negatively charged
 - Charge of 1 e is $-1e$
- The proton
 - $1 p = 1.602 \times 10^{-19}$ C
 - positively charged
 - Charge of 1 p is $+1e$
- Charge is quantized!

Think-Pair-Share

- What is the electrostatic force between an e^- and a p in a Hydrogen atom, given the radius of the H atom is 0.5×10^{-10} m?

Coulomb’s Law

with different constants

$$F = \frac{1}{4\pi \varepsilon_0} \frac{Q_1 Q_2}{r^2}$$

- ε_0 = permittivity of free space
- $\varepsilon_0 = \frac{1}{4\pi k} = 8.85 \times 10^{-12}$ C2/N·m2

(more relevant to future chapters)
Illustrations of Coulomb’s Law

- Comb & Paper
 ![Comb & Paper Illustration]

Illustrations of Coulomb’s Law

- Electroscope
 ![Electroscope Illustration]

Illustrations of Coulomb’s Law

- Van de Graaff generator & pie plates
 ![Van de Graaff generator & pie plates Illustration]

Illustrations of Coulomb’s Law

- Flowing water & charged rod
 ![Flowing water & charged rod Illustration]

Conductor versus Insulator

Conductor

- Neutral metal rod
 ![Neutral metal rod]

- Metal rod still neutral, but with a separation of charge electron’s travel
 ![Metal rod with separation of charge]

Insulator

- Nonconductor
 ![Nonconductor]

charge separation within molecules
 ![Charge separation within molecules]