Chapter 8: The Family of Stars

Distances to Stars

Trigonometric Parallax:
Star appears slightly shifted from different positions of Earth on its orbit.
The farther away the star is (larger \(d \)), the smaller the parallax angle \(p \).

\[
\text{d in parsec (pc)} \quad \text{p in arc seconds}
\]

1 pc = 3.26 LY

Intrinsic Brightness / Absolute Visual Magnitude (II)

The flux received from the light is proportional to its intrinsic brightness or luminosity \(L \) and inversely proportional to the square of the distance \(d \):

\[
F \sim \frac{L}{d^2}
\]

Star A

Star B

Earth

Both stars may appear equally bright, although star A is intrinsically much brighter than star B.
The Distance Modulus
If we know a star’s absolute magnitude, we can infer its distance by comparing absolute and apparent magnitudes:

Distance Modulus
\[m_V - M_V \]
\[= -5 + 5 \log_{10}(d \text{ [pc]}) \]
Distance in units of parsec

Equivalent:
\[d = 10^{(m_V - M_V + 5)/5} \text{ pc} \]

The Size (Radius) of a Star
We already know: flux increases with surface temperature \((\sim T^4)\); hotter stars are brighter.
But brightness also increases with size:

Star B will be brighter than star A.

Absolute brightness is proportional to radius squared, \(L \sim R^2\).

Quantitatively:
\[L = \frac{4\pi R^2 \sigma T^4}{4\pi R^2 \sigma T^4} \]
Surface area of the star
Surface flux due to a blackbody spectrum

Organizing the Family of Stars: The Hertzsprung-Russell Diagram
We know:
Stars have different temperatures, different luminosities, and different sizes.
To bring some order into that zoo of different types of stars: organize them in a diagram of Luminosity versus Temperature (or spectral type).

The Hertzsprung Russell Diagram
Most stars are found along the main sequence.
The Hertzsprung-Russell Diagram (II)

Stars spend most of their active life time on the Main Sequence. Same temperature, but much brighter than MS stars → Must be much larger → Giant Stars

Radii of Stars in the Hertzsprung-Russell Diagram

- Calculate density of Sirius B and Betelgeuse.
- Rigel
- Betelgeuse
- Sun
- Polaris

Luminosity Classes

- Ia Bright Supergiants
- Ib Supergiants
- II Bright Giants
- III Giants
- IV Subgiants
- V Main-Sequence Stars

Luminosity effects on the width of spectral lines

- Lower gravity near the surfaces of giants ⇒ smaller pressure ⇒ smaller effect of pressure broadening ⇒ narrower lines
Surveys of Stars

Ideal situation:
Determine properties of all stars within a certain volume.

Problem:
Fainter stars are hard to observe; we might be biased towards the more luminous stars.

A Census of the Stars

Faint, red dwarfs (low mass) are the most common stars.

Bright, hot, blue main-sequence stars (high mass) are very rare.

Giants and supergiants are extremely rare.