Introduction to Waves

• A wave is a disturbance that moves through a medium while the medium remains essentially at rest

• Examples
 • Water, sound, tension, seismic
Wave Motion

Velocity of rope particle

Velocity of wave

Copyright © 2005 Pearson Prentice Hall, Inc.
Wave Motion
Sinusoidal Wave

- One-dimensional waves
 \[f(x,t) = A \sin(kx - \omega t) \]

 \[k \equiv \frac{2\pi}{\lambda} \quad \omega \equiv \frac{2\pi}{T} \quad f \equiv \frac{\omega}{2\pi} = \frac{1}{T} \]

- Symbols
 - A amplitude, k wavenumber, \(\lambda \) wavelength, \(\omega \) angular frequency, \(T \) period, \(f \) frequency
Wave Characteristics

\[\lambda = \text{wavelength} \]
\[A = \text{amplitude} \]
\[f = \text{frequency} \]
\[T = \text{period} = \frac{1}{f} \]
\[\omega = 2\pi f = \text{angular frequency} \]
Velocity of Waves

- For all waves:

\[v = f \lambda = \frac{\omega}{k} = \frac{\lambda}{T} \]

- For a wave on a string or cord (string instruments):

\[v = \sqrt{\frac{F_T}{m/L}} \]

where:
- \(F_T \) = tension in string
- \(m = \) mass of string
- \(L = \) length of string
- \(m/L \) may also be written as \(\mu \)
Wave Equation

\[0 = b \frac{\partial^2 f}{\partial t^2} - \frac{\partial^2 f}{\partial x^2} \]

\[v = \frac{1}{\sqrt{b}} \]
Solution to the wave equation

\[f(x,t) = A \sin(kx - \omega t) \]

\[
\frac{df(x,t)}{dt} = -\omega A \cos(kx - \omega t) \\
\frac{d^2 f(x,t)}{dt^2} = \omega^2 A \sin(kx - \omega t)
\]

\[
\frac{df(x,t)}{dx} = kA \cos(kx - \omega t) \\
\frac{d^2 f(x,t)}{dt^2} = -k^2 A \sin(kx - \omega t)
\]

- Plugging into the wave equation,

\[
0 = b \frac{\partial^2 f}{\partial t^2} - \frac{\partial^2 f}{\partial x^2}
\]

\[
0 = \omega^2 A \sin(kx - \omega t) - (-)k^2 A \sin(kx - \omega t)
\]

\[
b = \frac{\omega^2}{k^2} = v^2
\]
Graphs

- The graphs show:
 - (a) displacement as a function of time
 - (b) velocity as a function of time
 - (c) acceleration as a function of time

- velocity is 90° out of phase with the displacement

- acceleration is 180° out of phase with the displacement
Plug & Chug

- (a) AM radio signals have frequencies between 550 kHz and 1600 kHz and travel with a speed of 3.00×10^8 m/s. What are the wavelengths of these signals?
- (b) On FM, the frequencies range from 88.0 MHz to 108 MHz and travel at the same speed. What are their wavelengths?
Types of waves

- **Transverse**
 - displacement is perpendicular to velocity
 - Ex - light

- **Longitudinal**
 - displacement is parallel to velocity
 - Ex - sound
Movie and Group Problems

- Mechanical Universe movie
 - Disk 10

- E15B.1, E15B.7, E15S.1
Electromagnetic Waves

- Mechanical Universe movie
 - Disk 10