Galaxies, Hubble, and the Expanding Universe

Typical spiral galaxies

Elliptical galaxies

Irregular galaxies
Using the New Astronomy Tools

- **Doppler Shift**
 - Observed frequency depends on relative motion of source and observer.

- **Cepheid Variables**
 - A class of yellow-giant pulsating stars.
 - Can be used to calculate distances.

- **Big Telescopes** - Smaller place for amateurs!

- **Photography**
 - Large photographic plates

Distances to Galaxies

- For nearby galaxies - use inverse-square law and method of standard candles
 - \[B = \text{constant} \times \frac{L}{D^2} \]
 - Pick an object of known brightness (Cepheid variable, planetary nebula, supernova).
 - Measure how bright it looks
 - Compare to known brightness to get distance

- Harlow Shapley (1917) calibrated the period-luminosity relationship.
The Hubble Law

- Edwin Hubble, in the early 1900's, found galaxies to be receding from the Milky Way
 - Deduced from spectra which show redshift, implying motion away from observer
 - Redshift observed in all but a very few nearby galaxies
 - Redshift larger for dimmer galaxies
 - Dimmer galaxies must be farther away
 - Recession is faster for more distant galaxies

Hubble's Law - Continued

- Recession velocity related to distance by
 - Velocity = constant \times \text{distance}
 - The Hubble law - now written as
 \[V = H \cdot D \]

- For nearby galaxies
 - Measure \(D \) using standard candles
 - Measure \(V \) using spectra
 - Calculate \(H \)
 - If \(V \) measured in km/sec and \(D \) in Mpc, then \(H \) is in km/sec/Mpc.

Hubble's Law - Continued

- Value of \(H \) is uncertain
 - \(H = 50 \) km/sec/Mpc or
 - \(100 \) km/sec/Mpc
 - Law implies Universe is expanding
 - Distance to galaxy - found from its velocity
 - Example:
 - Suppose measured \(V = 3000 \) km/sec
 - \(V = H \cdot D \)
 - Therefore, \(D = \frac{V}{H} = 3000/50 = 60 \) Mpc.

Galaxies Farther Away Recede Faster: Hubble’s Law

Quasars

Accretion disk
Jets formed by accretion disk

Gravitational lens effect

The Local Group

The Local Supercluster
The Great Wall

Courtesy M. J. Geller and J.P. Huchra; Smithsonian Astrophysical Observatory