A Non-Residually Solvable Hyperlinear One-Relator Group

Jon P. Bannon

Abstract. In this short note, we prove that the group $\langle a, b | a = [a, a^b] \rangle$ is hyperlinear. Unlike the non residually finite Baumslag-Solitar groups, this group is not residually solvable.

1. Introduction

Let Γ denote the one-relator group $\langle a, b | a^{-1}[a, a^b] \rangle$, where $a^b = bab^{-1}$ and $[a, a^b] = a^{-1}(a^b)^{-1}aa^b$. This group was introduced by G. Baumslag in [Baum69] as an example of a non-cyclic one-relator group with the property that all of its finite index quotients are cyclic. It follows that the group Γ is not residually finite. Also, Γ is not residually solvable, since a lies in every one of the derived subgroups of Γ. A countable discrete group G is hyperlinear if it can be embedded as a subgroup of the unitary group $U(\mathcal{R}^\omega)$ of an ultrapower \mathcal{R}^ω of the hyperfinite type II_1 factor \mathcal{R} (cf. [Pest08]). Equivalently, G is hyperlinear if the group von Neumann algebra $L(G)$ is embeddable into \mathcal{R}^ω (cf. [Pest08]). Proposition 4.14 of [Ueda09], establishes that every HNN extension of an \mathcal{R}^ω-embeddable type II_1 factor over a hyperfinite von Neumann subalgebra is also \mathcal{R}^ω-embeddable. We use this fact along with a new standard trick of McCool and Schupp for one-relator groups to prove that the group Γ above is hyperlinear. The main interest in this example is that it is an example of a non residually solvable hyperlinear one-relator group, and thus our result sheds a little light on the question of Nate Brown asking whether every one-relator group is hyperlinear. In [Rad00], Radulescu proved that the non residually finite Baumslag-Solitar group $\langle a, b | ab^3a^{-1}b^{-2} \rangle$ is hyperlinear. Radulescu’s result is shown in [Pest08] to follow more simply from the fact that these Baumslag-Solitar groups are residually solvable, and hence sofic.

2. Main Result

Theorem 1. The group $\Gamma = \langle a, b | a^{-1}[a, a^b] \rangle$ is hyperlinear.

Proof. We apply a rewriting process due to McCool and Schupp (cf. [McCSch73]). Let $a_0 = a$ and $a_{-1} = bab^{-1}$. Note that the word $a^{-1}[a, a^b] = a^{-2}a^{-1}b^{-1}abab^{-1}$

1991 Mathematics Subject Classification. Primary 46L10; Secondary 20F65.

Key words and phrases. sofic group, hyperlinear group, one-relator group.
when rewritten in terms of a_0 and a_{-1} becomes
\[a_0^{-2}(a_{-1})^{-1}a_0(a_{-1}). \]
The group $H = \langle a_0, a_{-1} | a_0^{-2}(a_{-1})^{-1}a_0(a_{-1}) \rangle$ is amenable, essentially by the Tits alternative. Or, we may appeal to Theorem 1.2 of [CeGrig97], and note that $a_0^{-2}(a_{-1})^{-1}a_0(a_{-1})$ has exponent sum zero on a_{-1}, and can be obtained from $(a_{-1})a_0(a_{-1})^{-1}a_0^{-2}$ by inverting a_{-1} and cyclically shifting, and hence H is amenable. We then note that the group Γ is isomorphic to the HNN extension
\[H*_{\varphi} = \langle t, H | t^{-1}a_{-1}t = a_0 \rangle. \]
Now, consider the group von Neumann algebra $L(H*_{\varphi})$. By Corollary 3.5 of [Ueda05], this is isomorphic to a reduced HNN extension of the hyperfinite II_1 factor \mathcal{R} over $L(\mathbb{Z})$. Therefore, by Proposition 4.14 of [Ueda09], $L(H*_{\varphi})$ is embeddable into an \mathcal{R}^ω, and therefore Γ is hyperlinear.

Remark 1. We wish to thank the referee for pointing out that recently it has been shown that any HNN extension of a sofic group over an amenable subgroup is sofic. Precisely, this is Corollary 3.4 of [DykCol10]. We may, in the above proof, replace Ueda’s result by this one and obtain that Γ is, in fact, a sofic group.

References

[Rad00] F. Radulescu, *The von Neumann algebra of the non-residually finite Baumslag group $\langle a, b | a^{-1}b^3a^{-1}b^{-2} \rangle$ embeds into \mathcal{R}^ω*, arXiv:math/0004172v3, 2000.
